Available online at www.sciencedirect.com

. . JOURNAL OF

4 ScienceDirect COMPUTATIONAL

e islas PHYSICS
ELSEVIER Journal of Computational Physics 227 (2007) 13061339

www.elsevier.com/locate/jcp

A new family of high-order compact upwind difference
schemes with good spectral resolution

Qiang Zhou, Zhaohui Yao, Feng He *, M.Y. Shen

Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People’s Republic of China

Received 22 December 2006; received in revised form 3 September 2007; accepted 4 September 2007
Available online 20 September 2007

Abstract

This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the pro-
posed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms
in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves
explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied
to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are
required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces
a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions,
boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selec-
tive length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an
improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy
of the proposed schemes are verified by executing four benchmark test cases.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Compact high-order finite difference schemes have been extensively studied and widely used to compute
problems involving incompressible, compressible and hypersonic flows [13-22,39], computational aeroacous-
tics [23-27,36,48], computational electromagnetics [28-30] and several other practical applications [31-35].
Using compact stencils that relate various derivatives with function values at discrete nodes, compact
schemes not only offer higher order approximations to differential operators but provide higher resolution
characteristics for the same number of scheme points in comparison to explicit finite difference schemes.
Due to their high formal order, good spectral resolution and their flexibility, compact high-order finite
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difference schemes are the most attractive schemes for flows with multiscales, e.g., turbulence. The smallest
scales, which are dictated by the physical viscosity of the flow, become unresolvable with the mesh size, and
they suffer from instabilities. There are three remedies [1] for this unwanted behavior: explicit filtering, arti-
ficial viscosity and schemes with inherent dissipation. Of these three remedies, the satisfactory way of phys-
ically dissipating unresolvable wavenumbers is to use a high-order compact upwind scheme. Upwinding in
compact schemes has earlier been incorporated by Tolstykh [2,3] through a Murman-type switch [4]. The
CUD-3 and CUD-5 [5] were their most famous schemes. In subsequent years, Tolstykh constructed compact
upwind schemes with arbitrary order via linear combinations of “elementary” CUD operators of fixed order
(say, third order). Some details of the technique (multioperator) can be found, for example, in [6,7]. How-
ever, in their work, no effort was made to optimize the resolution characteristics. An optimized version using
a free parameter was introduced by Adams and Shariff [40]. Not adopting the idea of “multioperator”’, which
was interesting but a bit complicated, Adams and Shariff [40] constructed their schemes basically following
Lele’s technique [12], namely, based on Hermite interpolation, but dropped the requirement of symmetric/
antisymmetric coefficients. In this paper, the method of developing compact upwind schemes is almost the
same as Adams and Shariff’s [40] except that the second derivative appears. We also note that some partic-
ular forms of compact upwind schemes have been proposed in [8-10]. Lele [12] emphasized the distinction
between the order of approximation and the spectral resolution and applied Pade schemes for the solution
of compressible and incompressible flow problems. Mahesh [37] presented and analyzed combined compact
uniform grid finite difference schemes (C-D schemes) which evaluate the first and the second derivative simul-
taneously. The generalized compact (GC) schemes and some of their important properties were discussed by
Shen et al. [11]. The GC schemes can be considered as a more general version of the standard Pade schemes
discussed by Lele [12]. The appearance of higher derivatives in both C-D schemes and GC schemes gives rise
to the spectral accuracy of the first derivative. The family of compact upwind schemes developed in this study
can be categorized as GC schemes. They have a speed advantage as well as higher resolution in comparison
to other compact schemes. Often, the tri-diagonal matrix inversion is required in applications of the com-
monly used compact schemes. However, using the proposed schemes, one can sequentially calculate all
the derivatives by explicit means if the boundary value problem is solved. When our schemes are applied
to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inver-
sions are required.

Sengupta et al. [36] pointed out that the definition of G-K-S stability [38] (also known as Lax stability)
might be too weak and hence it would not be a practical option to use those compact schemes for DNS,
CAA and CEM, which are only G—K-S stable. They also developed a Fourier—Laplace transform based spec-
tral method for the purpose of evaluating the spectral resolution, numerical stability and dispersion relation
preservation (DRP) property of any discrete computing technique. Using this analysis, some well-known com-
pact schemes that were found to be G—K-S and time stable are shown to be unstable for selective length scales
[36]. Subsequently, further improvements of this analysis method were obtained in [49-51] to provide results
for different spatial and temporal discretization methods. In the following sections, we refer to these schemes
as full spatial stable (referred to later on in this paper as FS-stable for short) if they are stable for all interior
and boundary points analyzed in isolation by this method. We consider the linear wave equation

Ou Ou
TR

as a model equation, working in the computational plane with a uniform grid of size 4 and total point number
N. It is assumed that computations with nonuniform grids can define analytical mappings between the non-
uniform grid and a corresponding uniform grid. The metrics of the mapping may then be used to relate the
derivatives on the uniform grid to those on the nonuniform grid. If the Dirichlet boundary condition is
adopted on the first point, the FS-stability means that spatial discretization schemes are all stable for points
j=2,3,...,N. In the present paper, our consideration is confined to this situation. In order to achieve FS-
stability, a new method for constructing stable boundary schemes is developed. Numerical examples show that
schemes that possess the property of FS-stability are asymptotically stable both in the scalar and system case.
If the flow fields involve shock waves, schemes should also be essentially oscillation-free near the disconti-
nuities. In recent years, many efforts have been devoted to the development of high resolution shock-capturing
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schemes that are higher-order accurate in smooth regions. For details of the background on this issue the
reader is referred to [39]. Also, it is pertinent to pay attention to the commonly used Jameson—Schmidt-Turkel
switching function (JST switch) [46], which can be interpreted as a limiter. The switch activates the dissipation
term (usually the second-difference term) at not only discontinuities but also extrema in the smooth region,
which may be too dissipative for DNS and other high-resolution calculations. A novel switch based on second
derivatives was introduced by Sengupta et al. [S0]. The method was very simple and was proven to be effective
for diagnosing the discontinuity for the Burgers equation. However, the threshold value must be selected cau-
tiously, because it depends on what problem is being solved.

Ren et al. [39] considers the hybrid scheme as the weighted average of two sub-schemes: the conservative
compact scheme proposed by Pirozzoli [45] and the WENO scheme. The weight function is designed to be
continuous so that the abrupt transition from one sub-scheme to another is avoided. The shortcoming of
the smoothness indicator in Ref. [39]is that it may take some points in smooth waves, especially in high-wave-
number waves, as points of discontinuity. In order to eliminate this deficiency, we identify the discontinuity in
two steps, which are discussed in detail in Section 4.1. Numerical tests show a significant improvement in res-
olution for scalar cases and flows with complex structures.

This paper is structured in the following manner. In the next section, we derive a new family of compact
upwind schemes in which free parameters are optimized for higher spectral resolution. Also, the dispersive
and dissipative features of our schemes are compared to other compact schemes. In Section 3, a new method
for constructing boundary schemes is presented. In order to pursue good resolution, the boundary schemes are
optimized. The third section also illustrate the process of solving derivatives when our schemes are adopted
with periodic boundaries. In Section 4, the schemes are made shock-capturing by hybridizing them with
WENO schemes. The hybridization procedure basically follows Ren et al.’s [39] method. An important
improvement is achieved by filtering out points in smooth waves that might be mistaken for points of discon-
tinuity, which, though important, has not attracted much attention before. In Section 5, the computational
cost of the first derivatives is assessed. In Section 6, four benchmark test cases are executed to confirm the
effectiveness of the hybrid schemes when applied to systems of equations. The concluding remarks are given
in Section 7.

2. The interior scheme
2.1. The interior schemes and resolution optimization

Consider the following model equation and its semi-discrete approximation

0 0 . o

ai; + ca—z =0, cisa positive constant, (2.1)
Ou

& + CFj = 0, (22)

where F; is an approximation of the first derivative 0u/0x, and F; can be obtained from the spatial discreti-
zation scheme. In the present paper, we are concerned with the GC schemes [11] from which F'; can be derived.
A simple example of GC schemes is given in the following expressions:

ka
h(ar1Fj-y + aroF ;4 ai F 1) + B (a0, 18,1 + a20S; + a215;41) = Z A0nljins (2.3a)
n=—kj
ka
h(ay 1Fjoy + a10F ; + @1y F i) + H (@181 + @2,08; + @21S141) = Z aontjins (2.3b)
n=—kj
where S; is the approximation of azu/é‘)xz. aig, Az, A1y, do; (i =—1,0,1) and ag,, do, (n = —ki,...,ky) are
coefficients to be determined. Let a;; = a,; = a»; = a»; = 0; then we obtain the following expected form in

which derivative terms are confined to the left side of the stencil:
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ka
h(ay 1 F iy + a1oF ;) + B (ay, 18,21 + a208)) = Z Ao nljsins (2.4a)
n=—kj
5}
W@, 1F;-y +aoF;) + h (@, 15,1 + axS,) = Z Ao nUjin- (2.4b)
n=—kj

In this family of compact schemes, one or two coeflicients are defined as free parameters for resolution opti-
mization. The method of optimizing the resolution is almost the same as the one used in the literature by
Adams and Shariff [40]. The details of determining coefficients are shown below.

First, a three-point third-order (2.4)-like scheme is developed. We set m =2 k; = 1,k, = 1, where m
denotes the highest order of the derivatives that appear in the schemes, and j — k; and j + k, are the smallest
and largest node serial numbers in the stencil, respectively. Substituting the set values of &k, and &, into Eq.
(2.4a), we have

1
h(ai \Fjy + aroF;) + 1 (as 18,1 + a20S;) = Z Qo nlhjin- (2.5)
n=-—1
There are seven coeflicients in this scheme, one of which disappears due to normalization. The constraint of
the order conditions (equality up to a term of order O(4°) in Eq. (2.5) requires four equations based on the
Taylor expansion.) leaves only two free parameters. The other coefficients are linear functions of the two free
parameters.
Set a; o = 1 for normalization, and let ag, a2 be the two free parameters. Then we get two linearly inde-
pendent equations by substituting apg = a, axg =0 and ago =0, axg = b into Eq. (2.5), respectively. The
scheme is the combination of the following two equations:

h(ay 1Fjy + F;) + h(ay1S;1) = ao_uj 1 + au; + ap 1.1, (2.6a)

h(@ 1F;-1 + F;) + h(@y,-1S;-1 + bS;) = o _1uj-1 + o141, (2.6b)
where

aj—1=3a/4—-1/4, ay_1=-7a/8—-3/8, ar_1=af/4—1/4, ay,=—a/8+3/8,

ap1 =—3/8—=3b/4, G, =-1/44+0b/2, ayy=3/8+3b/4, a1 =-1/4+3b/2.

The dispersion and dissipation errors of Egs. (2.6a) and (2.6b) are analyzed in the wavenumber domain. Fou-
rier analysis provides an effective way to quantify these errors of difference schemes. The Fourier transforms of
the left and right sides of Egs. (2.6a) and (2.6b) can be

ik(a; 167 + 1)it — Kap 1@t = (ap_1€7" + a + ap €™, (2.7a)
ik(aL,]e_iK + 1)17! — %2(6_12.,16_“" + b)fl = (Zzo,,le_i" + Zl()ﬁ]CiK)ljl. (27b)

In Egs. (2.7), i = v/—1; and « is called the scaled wavenumber because it is the product of wavenumber k and
grid size h; k and i® are functions of x and are called the modified scaled wavenumber for the first and second
derivative operators, respectively. The differences between i and x and between %> and x? represent the differ-
encing error in the wavenumber domain. k can be derived from (2.7a) and (2.7b) after simple diminution oper-
ation, so it is a function of @, b and «, namely ¥ = k(a, b, ). k can be divided into real and imaginary parts,
which represent the dispersion and the dissipation error, respectively. To ensure that the scheme is a good
approximation of the first derivative, the modified scaled wavenumber should agree with the corresponding
scaled wavenumber in as wide a range of wavenumbers as possible. We optimize the scheme numerically
by minimizing a target function, which is

=0 /0 wp(;c — Re(k)) dx + /0 mp(Im(fc))sz. (2.8)

Free parameters a and b enter the definition of ¢ through the substitution of the expression of k into Eq. (2.8).
The upper limit of integration in Eq. (2.8) is chosen as top < 7. o is the weight for the dispersion error; f3 is the
weight for the dissipation error. We require the scheme to satisfy two constraints:
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(a) The scheme is required to satisfy the necessary stability criterion [40] (Note that ¢ is positive in Eq.

(2.1).)
—Im(x) = 0; (2.9)

(b) Solving Eqs. (2.6a) and (2.6b), F; and S, can be expressed as linear functions of ;_; and S;_; as follows:

1
Fi=a 1 F,_+a 1S+ Z Ao nljins (2.10a)

n=—1

1
Si=a 1 Fi+ @S+ Y Aoattjn. (2.10b)
n=—1
In order not to magnify the numerical error in F; and S; which is due to the round-off error of the machine or
other reasons, the following constraints must be added:

a1 1| + |az—1] < 1,
|2~1/1,71| + a4 < 1,

where &1,,1,&2,,1,51‘,1 and 52,,1 are functions of & and coefficients in Egs. (2.6). Here we set 2 =1 for
simplicity.

Locally optimal free coefficients that minimize ¢ under the constraints (a) and (b) are obtained numerically.
A standard sequential quadratic programming (SQP) method [59] is used. The selection of this algorithm is
based on its ready availability (as the IMSL routine NCONF) and on its superior performance and reliability
compared to other approaches [59]. For details the reader is referred to [59,60]. The optimization result
strongly depends on the particular choice of parameters in Eq. (2.8) and is also sensitive to the initial guess.

In order to achieve high resolution, we set « = 1 and f# = 0 in the optimization of the scheme. Choosing
top = 1.5, we find the optimal parameters are a = 0.9033682206946493 and b = 0.3268142702664771. So far
the three-point third-order optimized GC scheme has been developed. We call this scheme 3P30m?2 for brief-
ness in this paper, where the three numbers in the name sequentially denote the number of points included, the
order of the formal accuracy and the highest order of the derivatives appearing in the scheme, respectively.

We can construct schemes of this family with up to seventh-order accuracy in the same way. All of these
schemes have high resolution and the dissipation properties are also satisfying.

Another third-order accuracy scheme is

a1 F; +aoF; = (ao w1 + auj + ap iy + aoatn)/h, (2.11)
which provides an a-family of third-order schemes with
aly():l, 00,12—0/24-3/4, a1,_1:a/3+1/6, a01_1:—110/18—23/36, a0,2:G/9—1/9.

a = 0.8915319975352406 gives the optimal resolution for the first derivative. For briefness, this scheme will be
referred to as the 4P30 ml scheme later.
The seventh-order accuracy scheme is

5
h(ay-1Fj1 + a1 oF ;) + W (a2, 18,1 + a208;) = Z Aol (2.12a)

n=-—1
5
h(C_ll,,le,l =+ (_ll‘on) =+ h2(527,1Sj71 =+ 6_12$(]Sj) = Z Zzo,,,uﬁ,,. (212b)

n=—1
The free parameters chosen for optimization in the seventh-order accuracy scheme are coefficients of S; and u;.
Letting a,9 =0, app = a, a»p = b and ayp = 0, we express other coefficients in the following expressions:
a,—y =af12+17/720, a;_; =49a/120 +2033/7200, a;, =1,
ap—1 = —13489a/21600 — 974513 /1296000, ao; = —5a/8 +103/96, a¢> = 10a/27 —73/162,
aps = —5a/32+21/128, aps =a/25—29/750, aps=11/2592 —a/216,
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a1 = 203b/720 + 17/720, @1 = 763b/800 + 2033/7200, @y = I,
o1 = —3935875/1296000 — 974513/1296000, @o; = —31b/96 + 103/96, @y, = 82b/81 — 73/162,
dos = —65b/128 +21/128, dgs = —29/750 + 52b/375, a5 = 11/2592 — 43b/2592.

Choosing top =2.5, we find the optimal parameters are a = 0.8339762325591169 and b=
0.6167415381304258. Later on in the present paper, this seventh-order accuracy scheme is referred to as the
7P70m2 scheme.
For values of coefficients of the three schemes proposed above, the reader is referred to Appendix A.
Following the manner mentioned above, we also constructed 4P40m2, SP5Om2 and 6P60Om2 schemes.
Though their computational costs are almost the same as that of the 7P70m2 scheme, their spectral resolution
is not as good as that of the 7P70m2 scheme. Therefore, they are not listed here.

2.2. Evaluation of the first derivative

The real part of the modified scaled wavenumbers for the first derivative is shown in Fig. 1. The 3P30m?2
scheme, which is almost the same as the 4P30m1 scheme, seems to follow the exact solution more closely than
the standard sixth-order Pade scheme, though it has a narrower stencil width. The 7P70m2 scheme has the
same stencil width as the tenth-order Pade scheme; however, it is seen to have much higher spectral accuracy
than the tenth-order Pade scheme. As a matter of fact, the proposed 7P70m?2 scheme is the most accurate one
in the spectral plane among all known compact schemes. The CUD-5 scheme, which has been extensively used
for solving various compressible and incompressible flows described by the Navier—Stokes equations [61-63],
however, has relatively poor spectral accuracy. So the proposed schemes are attractive alternatives to the
CUD-5 scheme. Table 1 provides a more quantitative comparison of the resolution properties of the schemes,
in which we compare these schemes using the function & = [ (x — Re(i))’ dk. Obviously, when the rop stays
the same, the resolution increases with the decrease of &.

Fig. 2 shows that 4P30m1, 3P30m2 and 7P70m2 have built-in numerical viscosity at high wavenumbers.
It can be seen that the 7P70m2 scheme is less dissipative at moderate wavenumbers than the CUD-5 scheme,
which means that the smaller scales can be better resolved by the 7P70m2 scheme when they are used to solve
problems with multi-scales, e.g., turbulence. All the upwind compact schemes shown here have strong dissi-
pation at high wavenumbers. The dissipation can be useful to suppress non-resolved small-scale instabilities.
It can also be helpful to inhibit odd-even decoupling observed in DNS with symmetric compact schemes [56].
However, Pade schemes and the C-D scheme are symmetric and essentially non-dissipative. When they are

—— spectral
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—a—— 7P70m2
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Fig. 1. Plot of real part of modified scaled wavenumber vs. scaled wavenumber for first derivative approximations. The CUD-5 scheme
here is the L(Sl> version with s = 1.5 (see Ref. [5]).
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Table 1
Comparison of the resolving efficiency
top = 1.5 top = 1.7 top =2.0

3P30m2 0.508557E—08 0.596528E—06 0.706533E—-04
4P30ml 0.242689E—-07 0.109257E—-05 0.766258E—04
7P70m?2 0.441636E—-07 0.104085E—06 0.131466E—06
Sixth-Pade 0.107860E—04 0.815729E—-04 0.120426E—-02
Tenth-Pade 0.358530E—08 0.838330E—-07 0.573833E—-05
Eighth-order C-D 0.204677E—-07 0.343684E—06 0.158558E—04
CUD-5 0.137679E—-03 0.883426E—-03 0.952471E-02

scaled wavenumber
0.5 1 1.5 2 2.5
0 f=rey L R e i e il £ 25 URSH R UL IR |
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N
LI I I S Y N B Y B O B

imaginary part of modified scaled wavenumber

-4

Fig. 2. Plot of imaginary part of modified scaled wavenumber vs. scaled wavenumber for first derivative approximations.

used in turbulence simulations, extra stabilizing filters are required, which are equivalent to adding numerical
dissipation in an ad hoc manner, to suppress poorly resolved waves.

2.3. Evaluation of the second derivative

There are second derivatives in the formulae of the 3P30m2 and 7P70m2 schemes that may have further
use [37], as for the diffusion terms in Navier—-Stokes equations. Because of this, even though they are not our
main concern, the properties of the second derivatives should also be assessed. The plot of the real part of
modified scaled wavenumber for the second derivative against scaled wavenumber for a variety of schemes
is presented in Fig. 3. Generally speaking [57], it is better to obtain approximations of the second derivatives
directly rather than indirectly (i.e., applying the first derivative twice). This statement can be verified by com-
paring the curves of the Pade6 and Padel0 schemes for the second derivative with those using the correspond-
ing first derivatives twice. However, it seems that our case is the opposite situation. The second derivatives
obtained directly from 3P30m2 and 7P70m2 schemes, are accurate only with lower wavenumbers, which
are only comparable with the results of the explicit eighth scheme with first derivatives used twice. However,
the results when the first derivatives are used twice in the 4P30m1, 3P30m2 and 7P70m2 schemes are a bit
better, especially in the 7P70m2 case, which achieves high spectral accuracy to about 4/5 of the Nyquist wave-
number. This situation can be attributed to our main motivation, which is to develop and optimize schemes
for good spectral accuracy for the first derivative. At first, we did not consider what kind of influence the opti-
mization would have on the second derivative, but later we learned that the influence was negative; in other
words, good resolution was achieved at the sacrifice of the second derivative. As a whole, for the direct case,
the second derivatives from 3P30m2 and 7P70m2 show no competition with those from other compact
schemes. For the indirect case, only 4P30ml is comparable with other schemes, and the 3P30m2 and
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Fig. 3. Plot of real part of modified scaled wavenumber vs. scaled wavenumber for second derivative approximations. The “2 times” in the
figure denotes the first derivative scheme was used two times.

7P70m?2 schemes are too time-consuming to be adopted in practice. Based on the above analysis, we do not
recommend 3P30m?2 or 7P70m?2 for the calculation of second derivatives through either the direct or indirect
methods. The 4P30m1 scheme may be an alternative to other schemes for some problems because of its speed
advantage (see Section 5).

The plot of the imaginary part of the modified scaled wavenumber for the second derivative against the
scaled wavenumber for the proposed schemes is presented in Fig. 4. It illustrates the dispersion property of
the second derivative. All symmetric schemes for the second derivative have no dispersion error, which is
why they do not appear in the plot. However, upwind schemes have obvious deviation from the zero line
at high wavenumbers. The dispersion errors of the second derivatives computed directly from 3P30m2 and
7P70m2 are a bit bigger than that computed indirectly by 7P70m2, which is better in the sense that there
is essentially no error at a wider range of wavenumbers. The worst results in these schemes come from indirect
calculation with the 3P30m2 and 4P30m1 schemes.

Based on the above analysis, a conclusion can be reached that upwind schemes do not perform very well if
used for second derivatives. So, for the viscous terms in N-S equations, commonly used symmetric schemes
are more recommended.
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Fig. 4. Plot of imaginary part of modified scaled wavenumber vs. scaled wavenumber for second derivative approximations. The ““2 times”
in the figure denotes the first derivative scheme was used two times.
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2.4. Solution strategies with periodic boundary conditions
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We consider a uniform 1-D mesh with the grid space denoted by /4, consisting of N points:

X153 X2y ooy Xje 15, Xy Xjip 15 -

..,xy. In order to illustrate the solution strategies with periodic boundary conditions,

for simplicity and no loss of generality, we take the 4P30ml scheme for example and implement it on all
points. Therefore we have (for convenience, in the following expressions in this subsection, we let 4 stand
for a,_;, B stand for a;o, U; for the first derivative of the function # on point j, and D; for
(@o—1uj1 + au; + ao 11 + @ooujya)/h):

B A7
A B
A B

A B

A B

- U/l -
Us
Us

/
Unfl

U/

- D,
D,
Ds

anl

D,

(2.13)

Provided B # 0, the operations corresponding to (—(4)E; + E;) — E; (E; stands for the jth row of the system
(2.13)) are performed for each j = n,n — 1,...2 to eliminate the element A4 in the first row. The resulting sys-

tem has the form

[B 4 A(—4)"" [ UL T
B U,
A B U;
4 B U,
I 4 BlL U |
r 2 L A (2.14)
L
D,
D;
D,
L D" .

Then forward substitution can be performed for the solution. Normally, there is no need to do the elimination
work from 7 to 2. The ratio A4/B is less than 1 for numerical stability, so if # is bigger than some value ny we
will have (—4/B)""" < 1.0E—16 (n, is the minimum positive integer satisfying this inequality), which is com-
parable to the round-off error of the machine. The fact illustrated above means that there is no influence on the
result of the computation if the (2.15)-like system with n > ny is solved.

_ - /o B 2 no—1
B Ui D+ (=5)Du+ (=3) Duct+ - (=5)" Duspi
A B U, D,
A B U, D;
= . . (2.15)
A B U;71 anl
L 4 Bl U, | D,




Q. Zhou et al. | Journal of Computational Physics 227 (2007) 1306—1339 1315

So far we have learned that the solving of the system (2.13) is very efficient. When 7 is adequately large, it is
comparable with the solving of the system with non-periodic conditions. If the 7P70m2 or 3P30m2 scheme is
adopted, the resulting system can be solved in the same way except that 4, B are 2 x 2 matrices and U;, D; are
vectors of two elements.

3. Boundary closures
3.1. Boundary treatment for full spatial stability

A von Neumann matrix spectral analysis was developed in Ref. [36] to analyze spatial discretization
schemes for any explicit or implicit scheme to investigate the full domain simultaneously. This analysis allows
one to evaluate various boundary closures and their effects on the domain interior. Using this analysis, Seng-
upta et al. [36] found that some well-known compact schemes that were found to be G-K-S and time stable
are unstable for selective length scales, which is attributed to boundary closure. In this paper, we suggest a new
boundary treatment based on the interior schemes to remove this drawback.

All compact schemes can be written in an equivalent explicit form:

u' = Cu, (3.1)
where u = [... w1, u;, 141, . . .]T and o' = [ uu,,, .. .]T. The analysis [36,47,58] is performed in the
wavenumber plane, with the unknown expressed in terms of the bi-lateral Laplace transform pair:

u(x;) = / U (k)e™ dk. (3.2)
The derivative of the function at x; can be expressed for the Fourier spectral method as

W (x;) = / KU (k) di, (3.3)

and the corresponding expression for the numerical derivative using other discrete computing methods can be
written as

u (x;) = / ikeqU (k)™ dk. (3.4)

Using Eq. (3.2) in Eq. (3.1) and comparing with Eq. (3.4), it can be readily shown that [36]
N
(keg); = =1y CyuPy; (Pyy = €'(1 = j)kh). (35)
=1

In the present paper, the boundary treatment is an optimization process for resolution under the constraints of
stability. The stability of the boundary schemes is our main concern, based on which high resolution is also
pursued.

First take the 4P30m1 scheme as the interior scheme for example. Note that the 4P30m1 scheme may be
applied from j = 2 to j = N — 2. Therefore, it needs boundary schemes only at j = 1, N — 1 and N in the con-
ventional way. Here we do not match the boundary schemes with the interior schemes by the conventional
method because it can not ensure the stability of near-boundary schemes (see Ref. [36]).

The method described below is not hard to handle, and, to our best knowledge, it is brand new.

The following steps detail the procedure for constructing boundary schemes:

(1) For the Ist point (the boundary point), the following scheme is recommended:

uy = (=3uy + 4ur — u3)/2h. (3.6)

(2) For the 2nd point, we suggest an assistant scheme. The assistant scheme is not the one truly used on the
2nd point. However, it has a valuable function. It can be used to produce stable schemes for other points near
the boundary. The assistant scheme, shown below (3.7), is an a — b — family of schemes whose accuracy is at
least third-order:



1316 Q. Zhou et al. | Journal of Computational Physics 227 (2007) 1306—1339

wy = (ot + Conuty + Ca3U3 + Coauly + CosUs + Ca6ls) /B, (3.7)
where

1 =4b+a—1/3,

o =—150—4a—-1/2,

¢35 =20b+6a+1,

¢4 =—10b —4a —1/6,

G5 =4,

cr6 = b.
However, we should note that this assistant scheme is essentially unstable. After all the schemes become stable
with the help of the assistant scheme, the assistant scheme will be replaced with another scheme for the sake of

the stability of the 2nd point. We recommend the following explicit second-order central difference scheme
(3.8) to replace the assistant scheme (3.7),

uy = (—uy + u3)/2h. (3.83)

(3) For the 3rd point near the boundary, the scheme is produced by the combination of the assistant scheme
and the interior scheme. For the current case, the interior scheme is 4P30m1, which has the following form on
the 3rd point:

1 2
ug - (Z Z A0.nU3+n — al,l“é) Jaip. (3.9)
n=—1

Substituting Eq. (3.7) into Eq. (3.9) yields the scheme on the 3rd point with ¢ and b as free parameters. Work-
ing on the obtained scheme under the procedure listed in Section 2.1 we can get the scheme with the optimal
resolution under the constraints of stability. In this optimization we set fop = 1.0. The resulting optimal values
of a and b are 0.2316635846960722E—08 and —0.8639865391536755E—01. Thus, the scheme for the 3rd point
is obtained, which is

uy = 0.3149166539411899E+00u; — 0.1552924451942358E+01u,
+0.1229197935024197E+01us — 0.1921363283034527E —01uy
—0.1205200134841980E —01us + 0.4007549715573577E —01ue. (3.10)

These two values of ¢ and » work well for the 3rd point. However, it does not necessarily mean that this
combination of a and b is a good choice for the point j = 4 and other successive points. Schemes on near-
boundary points are prone to instability, so we should work on them point by point until the property of
the scheme on some point approaches that of the interior scheme. In short, the process of constructing the
boundary schemes is essentially a continuous transition from the assistant scheme to the interior scheme,
so all the boundary schemes are their intermediate versions.

(4) For the 4th point near the boundary, the scheme is developed in a similar manner. On this point, the
interior scheme has the following form:

1 &
ML = (z Z:lao,nu4+n - al,—lu/3> /0140~ (3~11)

Substituting Eq. (3.7) into Eq. (3.9), and then substituting the obtained (3.9) directly into Eq. (3.11), the scheme
on the 4th point is obtained. Free parameters a and b are also included. Optimizing them under the constraints
of stability yields a = 0.8650992966101587E —02 and » = 0.3460392329851057E—01. So we get
uy, = — 0.4007550301083819E —01u; + 0.3223617559816121E+00u,
—0.1222025327151400E+4-01u; + 0.6326604756729091 E+00u4
+0.3116855212361244E+00us — 0.4606922728407310E —02us. (3.12)
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(5) Following the same procedure, we get a = 0.4522250370424067E—02 and b = 0.2110056888528983E— 01
for the Sth pointand a = 0.4775523008358158E+00and b = —0.9528171799374116E—01 for point j = 6. Using
the optimized parameters, we get the following schemes for the 5th and 6th points, respectively.

us = 0.2439117258895970E—01u; — 0.1713875409769093E+00u,
+0.5962531044108447E+00u; — 0.1492293792986813E+01u4 (3.13)
+0.747370573430068 7E+00us + 0.3077184838077115E4-00u4
—0.1205200027386216E —01u.

uy = —0.1096648176992323E—01u; + 0.7272086997699330E —01u,
—0.25293574740001 56 E+00u; + 0.6584785916213984E+00u, (3.14)
—0.1508480763411324E4-01us 4 0.7434112820192262E+00us
+0.3098242492375073E+00u; — 0.1205200027386216E —01us.

In the same way, all the schemes on the successive points can be considered as ““boundary schemes” and can be
optimized for good resolution. However, farther away from the boundary, the influence of the boundary
diminishes quickly. On points 7 < j < N — 2 there is no need to change these two free parameters because
of the good resolution characteristics of these points when the combination of @ and b for point j = 6 is used.
For conciseness, the optimal values of the free parameters are also listed in Table 2.

(6) For points j = N — 1 and N, we recommend the following scheme expressions:

Uy = (2uy + 3uy_y — 6buy o+ uy_3)/6h, (3.15a)
uy = (Buy — duy_y + uy_»)/2h. (3.15b)

So far, all the boundary schemes have been produced. Near the left boundary, there are six boundary
schemes, which are (3.6), (3.8), (3.10), (3.12), (3.13) and (3.14). They are used for the points j =1,2,3,4,5
and 6, respectively. Near the right boundary, only two points need boundary schemes. They are j =N — 1
and N. Schemes (3.15a) and (3.15b) are used for them.

There is nothing new in the process of calculating the first derivatives, just going through the point j = 1 to
the point j = N. Emphasis is placed on the point j = 2 where the scheme used is (3.8), not the assistant scheme
(3.7).

For different nodes the real and imaginary parts of k.q/ are obtained from Eq. (3.5) and plotted as a func-
tion of kh in Figs. 5 and 6, respectively. Here a value of NV is chosen sufficiently large so that the results pre-
sented for k.q/ do not depend upon this choice. We use 30 points, with the 1st and the 30th point as boundary
points. Since the first derivative in the interior scheme is upwind biased, the best resolution property, namely
the resolution closest to the property of the interior scheme, occurs on the 28th point. Fig. 5 shows that the
spectral resolution becomes more accurate on the spectral plane as j increases except for the right two bound-
ary points. It is noteworthy that the resolution has been very close to that of the point j = 28 when j equals 6.
From Fig. 6 we can see that the scheme is stable on every point as expected.

If the 3P30m2 scheme is taken as the interior scheme, the method for boundary closures is essentially not
changed except that not merely the first but also the second derivative of the point j = 2 is offered in the assis-
tant scheme. We propose the following assistant expression for the second derivative:

2

uy = (s21u1 + 20Uy + $23U3 + S2.4uUs + S2.5Us + S2.6Us + S27U7) /I, (3.16)
Table 2
Optimized parameters for boundary closures for the 4P30m1 scheme

top a b

j=3 1.0 0.2316635846960722E—08 —0.8639865391536755E—01
j=4 1.0 0.8650992966101587E—02 0.3460392329851057E—01
j=5 0.8 0.4522250370424067E—02 0.2110056888528983E—01

j=06 1.5 0.4775523008358158E+00 —0.9528171799374116E—01
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Fig. 5. Real part of k./ for the first derivative for points j = 2,3,4,5,6,16,29 and 30 for the 4P30m1 scheme.
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Fig. 6. Imaginary part of k. for the first derivative for points j = 2,3,4,5,6,16,29 and 30 for the 4P30m1 scheme.

where
s =—g—5¢+11/12,
s20 = 5g+24g —5/3,
sp3 =—10g — 45+ 1/2,
$24 = 10g +40q + 1/3,
sps = —5g — 15¢ — 1/12,
$26 = &
82,7 = (-
Following the same procedures listed above, we can get schemes with good resolution satisfying the con-
straints of stability on the near-boundary points. The optimization results of free parameters are listed in

Table 3. Boundary schemes (3.6) and (3.15b) are used on the left and right boundary points. For the 2nd point
we also recommend the explicit second-order central difference Scheme (3.8).



Table 3
Optimized parameters for boundary closures for the 3P30m2 scheme

top a b g q
1.0 -0.1490028782144423E—05 —0.2161896888074244E+00 0.1222489959707739E—01 —0.4171400590339880E+00

j=3

j=4 1.0 0.9168425800492562E—02  0.3667370129576726E—01 0.2663926459408015E—03  0.1598356508751940E—02
j=5 1.2 0.5462352011564656E+00  —0.1045420416167275E+00 0.1187901591785011E+00 0.4980439891685980E-+00
j=6
j=1

1.5 0.5128715797018083E+01  —0.9974972133950721E+00  0.9542820125620346E+00 —0.5203265448047872E+01
1.5 0.1876948339134585E+01  —0.3608498048611949E+00 0.3770446571440025E+00 —0.1356626188389042E+01

If the 7P70m?2 scheme is used on the interior points, the method for boundary closures is essentially the
same as that for the 3P30m2 scheme. (Details can be found in Appendix B.)

Due to the constraints of stability on every point, the schemes proposed in this paper are third-order accu-
rate globally (second-order at boundaries) on a uniform grid when the boundary conditions are non-periodic.
However, through optimization, the proposed schemes are designed to possess enhanced spectral resolution.
The property of good spectral resolution of a scheme is quite important in fields such as aeroacoustics and
turbulence simulations. From Fig. 5, we can learn that the resolution of the near-boundary points is worse
than that of the interior points. So it is suggested that the mesh should be slightly clustered near the boundary
on the physical plane to pursue global high spectral accuracy.

Because there is no anti-diffusion on any point, FS-stability is stricter than time stability. Also, considering
that, multiplying the obtained derivatives by metric coefficients does not change the stability property of any
point, we can conclude that the schemes proposed above are FS-stable and are therefore also asymptotically
stable on a stretched grid with arbitrary strength. However, the schemes that only possess time stability may
become time unstable when the grid is stretched, so FS-stable schemes have a substantial advantage over other
schemes in regard to such problems that involve complex geometries on the physical plane, where clustered
meshes are often adopted.

3.2. Numerical verification

In this section, we use numerical solutions of the advection equation to identify the boundary closures that
yield stable solutions over long time periods.

Consider the one-dimensional advection equation, u, +u, =0, with initial conditions wu(x) = sin(nx),
defined on [—1,1] with boundary conditions u(—1,¢) = sin(n(—1 — ¢)). Note that the exact solution to the
above equation is given by weyue(x, 1) = sin(n(x — 7).

/vvv vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv ‘
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The time integration is performed by means of a three-stage, TVD Runge-Kutta scheme [54], which is also
adopted in all other numerical tests in the present paper. A uniform mesh with three different resolutions is
used for spatial discretization. Setting the CFL number to 0.1, we integrate the solution to ¢+ = 100. Note that

the solution travels one wavelength in two time units. The L, error, \/ /N ZL (u; — Uexaet ) 18 then examined

for boundedness. Fig. 7 illustrates the stability of the proposed schemes. It can be seen that the combina-
tions of the boundary and interior schemes are asymptotically stable. After a simple approximate estimate,
it is also clear that the formal accuracy of these schemes is third-order, one order higher than the scheme
presented by Sengupta et al. [52], who, to our best knowledge, were the first to consider FS-stability in
Ref. [36].

4. Hybridization for shock-capturing
4.1. Hybridization strategy

Compact schemes are very accurate in smooth regions with spectral-like resolution, but they have been
found to cause non-physical oscillations when they are applied directly to flows with discontinuities. The
non-physical oscillations (Gibbs” phenomena) do not decline in magnitude when the grid is refined. Several
approaches have been proposed to overcome this difficulty. For a detail review the reader is referred to
[39]. Pirozzoli [45] has derived a hybrid compact-WENO scheme in which a conservative compact scheme
is developed to be coupled with the WENO scheme. The hybrid compact-WENO scheme generally outper-
forms Adams and Shariff’s [40] compact-ENO scheme in the sense that the WENO scheme yields higher accu-
racy than the ENO scheme at almost the same price. Ren et al. [39] considered the hybrid scheme as the
weighted average of two sub-schemes: the conservative compact scheme proposed by Pirozzoli [45] and the
WENO scheme. The weight function is designed to be continuous so that the abrupt transition from one
sub-scheme to another is avoided. Also, it is pertinent to mention that a switching function [46], named the
Jameson—Schmidt-Turkel switch (JST switch) after the inventors’ names by later investigators, has earlier
been proposed for a scalar dissipation model. The JST switch can be interpreted as a limiter. It activates
the dissipation term (usually the second-difference term) at not only discontinuities but also extrema in the
smooth region, which is too dissipative for high-resolution calculations. A novel switch based on second deriv-
atives was introduced by Sengupta et al. [50]. The method was very simple and was proven to be effective for
diagnosing the discontinuity of the Burgers equation. However, the threshold value must be selected cau-
tiously, because the threshold depends on the problem being solved. For example, a threshold value of 50 (rec-
ommended by the author) may be suitable for the 1-D sine wave, sin(x). But when it is used to simulate
another smooth wave, sin(20x), which inherently has larger second derivatives, many points will be misdiag-
nosed as discontinuities. It also should be noted that this problem can not be fixed by refining the mesh. Addi-
tionally, second derivatives as well as first derivatives oscillate from extreme positive values to extreme
negative values near discontinuities. Between the negative and positive extrema there exist second derivatives
with relatively small amplitudes. So, when a discontinuity comes up, the recommended upwind schemes might
not be patched in a continuous manner, but a staggered manner. The ruleless abrupt change of schemes may
result in unknown source terms with an unknown nature in the difference equation.

The drawback of the smoothness indicator in Ref. [39] is that it may mistake some points in smooth waves
for discontinuity points, especially in high-wavenumber waves. This issue is addressed in detail in the follow-
ing description of the hybridization process. In order to counter this deficiency, we identify the discontinuity in
two steps, where the details in the first step are almost the same as those in Ref. [39]. In the second step, a new
discontinuity indicator is adopted to pick out these points, which are taken as discontinuity in the preceding
step. The adoption of the second step only incurs a little computational cost; however, it can significantly
enhance the resolution of the solution.

In the present paper, the compact scheme can be expressed in the following form (/ is set to 1 for simplicity
in the computation domain):

AUj_1+BUj:Dj, (41)
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where
ky
’ Z Ao pUjin a a a a
i n=—k — —
e I TR L A B A e @2
u; b ay-1 ax-| ayo ap
E aonljn
n=—ky
Also the WENO scheme can be expressed in this form:
where
/ ZWENO __ 7WENO
U : -/ 1 0
U=\ 2|, D=7 S g : (4.4)
U’ . f@ 0 1
J Jj

The f X‘f%o in expression (4.4) denotes the flux function of the WENO scheme, while fj(2> denotes the explicit
central difference scheme for the second derivative on the jth node. For the 3P30m2 and 4P30m1 schemes, the
WENO-3 scheme (third-order accurate at discontinuities and fifth-order accurate in the smooth region) [42] is
chosen for hybridization, while for 7P70m2, the MPWENO-5 scheme (fifth-order accurate at discontinuities
and ninth-order accurate in the smooth region) [41] is employed. As regards fj@, the fourth-order and sixth-
order explicit central schemes are adopted for 3P30m2 and 7P70m?2, respectively.

Multiplying Eq. (4.1) by ¢; and Eq. (4.3) by 1 — g;, and adding the results together, we have

0,AU;1 + (0;8 + (1 = 0;)B)U; = a;D; + (1 — 0;) D). (4.5)

Eq. (4.5) is reduced to a compact scheme if 6; = 1 and to the WENO scheme if 6; = 0. According to the spirit
of the hybrid scheme, it is necessary that the weight be directly related to the smoothness of the numerical
solution. The process of defining the weight function ¢ is as follows:

(1) The smoothness indicator is designed to be [39]

_ PAGaAS+e
LA+ (A e

where Af; = f; — f;—1. The ¢ is a positive real number to avoid possible division by zero. Following Ren et al.’s
[39] method, we choose ¢ in the formula

~ 09r.

1-09r,
In Eq. (4.7), ¢ acts as a threshold value. All fluctuations smaller than this value will be considered as turbulent
fluctuations and will not be damped by using the WENO scheme. For a detailed description of Eq. (4.7), the

reader is referred to [39]. It is apparent that ; € [0, 1] and this will facilitate the choice of the threshold value r,
(see Eq. (4.8)). In this step the weight takes the following form [39]:

¢, = min (1?) (4.8)

c

(4.6)

e, (4.7

&

In our tests, ¢ and r, are set to be 1 x 10~* and 0.6, respectively.
(2) We propose the following criterion to filter out these points around which smooth waves exist. The cri-
terion is applied only on points where o; is less than 1.

If both
o ([Afi| + BilAfi 1]+ BilAfi-al) > [Afil (4.9)
and
% (|Afjetl + Bal Afjial + Bl Afjsl) > [AS] (4.10)

hold true, o, is modified to 1; otherwise o; is set to 0. Note that S, > 1,5, > 1,04(1 +26,) > 1,
ar(1 +2p,) > 1, in inequalities (4.9) and (4.10).
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In step 1, we have learned that the ratio of |Af;.| to |Af;| is much greater or less than one if ¢; < 1. How-
ever, this does not necessarily mean that a discontinuity exists around point j. In Fig. 8, sine waves with wave-
numbers kh = % and kh=7% are shown respectively. After step 1, we get ¢, <1 on points
j=13,4,8,9,13,14,18,19,23 and 24, where the function u is still smooth. If WENO schemes are applied on
these points, it will produce noticeable dispersion and dissipation errors and the solution may be contami-
nated, so more information should be introduced from points in the neighborhood for the discontinuity diag-
nosis. This is why |Af;_; |,| Afj—2 |,| Afj+2| and |Af}43| show up and have larger weights (f; > 1, i = 1,2) than
|Af;| and |Af;.1| in this criterion. The weight sums of the LHS of inequalities (4.9) and (4.10), which are con-
trolled by the value of parameters o; and f; (i = 1,2), should both be greater than 1, or we can not ensure that
discontinuity exists when any one of the inequalities fails. So «;(1 4+ 2f;) > 1 (i = 1,2) should be satisfied. For
simplicity and no loss of generality, we only discuss on the case of |Af; |>| Afj+1]. Under this condition, if
inequality (4.9) does not hold true, it implies that the average of |Af;_i| and |Af,_,| is smaller than |Af}|,
so |Af;| is the greatest one. We can conclude that probably a discontinuity exists near the point j. If expression
(4.9) is satisfied, then we go on to check the inequality (4.10). If inequality (4.10) also holds true, which means
that |Af;| is not much greater than |Af;,, | or |Af}.3|, we can arrive at the conclusion that there exists a smooth
wave around this point; otherwise the information that |Af;| is much greater than |Af}.,| and |Af}.3| can be

T T T T T 1 T T T

T T T T 1 T T T 7

Fig. 8. Illustration for points that can be taken as discontinuities following the method in Ref. [39]: (a) kh = 3?"; (b) kh =%.
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obtained, which means that there is a discontinuity near the point j. The ; and f; (i = 1,2) in the criterion are
parameters that can be adjusted for different strengths of discontinuity. Generally speaking, the discontinuity
we capture becomes stronger with the increase of «; and f; (i = 1,2). Numerical tests show that the combina-
tion of oy = 0.15,0, = 0.3 and 8, = §, = 5 works well.

After these two steps are executed, the weight function g, is set to 0 only when the real discontinuity shows
up with the strength of some level measured by o;(1 4+ 2,) > 1 (i = 1,2) or even stronger; otherwise it is chan-
ged to 1. The reason for these actions is that we expect the compact sub-scheme that has the property of good
dispersion relation preservation to dominate the hybrid scheme. In order to avoid the non-smooth transition
between the sub-schemes, the weight can be smoothed in the following simple way.

The weights near the point where ¢; = 0 are modified using the expression

0j+i = max(0,0;,; — (1 — ;) exp(=yli[)), (4.11)
where
(i:—m1-~-m2,i7é0). (412)

Indices m; and m, are used to confine the domain affected by the discontinuity, and the parameter 7 is used
to adjust the influence on the neighbor weights when discontinuity occurs. Numerical tests show that m; = 3
and m, = 1 work well for the 4P30m1 and 3P30m2 schemes, and that m; = 4 and m, = 3 work well for the
7P70m?2 scheme. Numerical tests also show that y = 1 is an appropriate choice for all these schemes.

4.2. Numerical tests for proposed hybridization strategy

In the following, two numerical tests are executed to confirm the high level of fidelity of the present hybrid-
ization method. For convenience, we label the hybrid schemes only using the names of the corresponding com-
pact schemes.

(1) We consider the scalar model problem with periodic boundaries:

u,+u. =0, —-1<x<1, t>0,
(4.13)
u(x,0) =sin(30mx), —-1<x<1.

Two tests are executed in this case, where the 7P70m2 scheme hybridized with the MPWENO-5 scheme
is employed. In the first test, the proposed hybridization method is adopted, which concludes step 1 and 2.
In the second test, only step 1 is executed for calculating the weights. Using a uniform mesh with 101
points, we advance the time to t = 0.5. The results are shown in Figs. 9(a) and (b), and the results from
the MPWENO-5 scheme are also provided for comparison. Due to the built-in dissipation, the waves are
all attenuated in amplitude.